

CELANEX® 2408MT GF20

20% glass fiber reinforced medical grade, for applications with high gloss and improved overmolding adhesion to TPEs Chemical abbreviation according to ISO 1043-1: PBT+PET GF20. Celanex® 2408MT® GF20 is a special grade developed for medical industry applications and is filled with 20% glass fiber for injection molded parts with superior adhesion to thermoplastic copolyesters in a two-component molding process.

Celanex 2408MT GF20 is a special grade developed for medical industry applications and complies with:

- CFR 21 (177.1660) of the Food and Drug Administration (FDA)
- the corresponding EU and national registry regulatory requirements
- biocompatibility in tests corresponding to USP 23 Class VI/ISO 10993
- low residual monomers
- · no animal products

Product information

i roduct irriorriation			
Part Marking Code	> (PBT+PET)-GF	20 <	ISO 11469
Rheological properties			
Melt volume-flow rate	20	cm ³ /10min	ISO 1133
Temperature	265		
Load	2.16	kg	
Moulding shrinkage, parallel	0.3	_	ISO 294-4, 2577
Moulding shrinkage range, parallel	0.2 - 0.4	%	ISO 294-4, 2577
Moulding shrinkage, normal	0.8	%	ISO 294-4, 2577
Moulding shrinkage range, normal	0.7 - 0.9	%	ISO 294-4, 2577
Typical mechanical properties			
Tensile Modulus	7400	MPa	ISO 527-1/-2
Stress at break, 5mm/min	135	MPa	ISO 527-1/-2
Strain at break, 5mm/min	3	%	ISO 527-1/-2
Flexural Modulus	7350	MPa	ISO 178
Flexural Strength	200	MPa	ISO 178
Charpy impact strength, 23°C	45	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	40	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	8	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	8	kJ/m²	ISO 179/1eA
Ball indentation hardness, H 358/30	205	MPa	ISO 2039-1
Thermal properties			
Melting temperature, 10 °C/min	255	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.8 MPa	203	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	222	°C	ISO 75-1/-2
Temp. of deflection under load, 8 MPa	90	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h, 50N	210	°C	ISO 306
Coeff. of linear therm. expansion, parallel	40	E-6/K	ISO 11359-1/-2

Printed: 2023-09-14

CELANEX® 2408MT GF20

Coeff. of linear therm. expansion, normal 75 E-6/K ISO 11359-1/-2

Other properties

Humidity absorption, 2mm	0.15 %	Sim. to ISO 62
Water absorption, 2mm	0.4 %	Sim. to ISO 62
Density	1480 kg/m ³	ISO 1183

Injection

Drying Temperature	120 - 140 °	C C
Drying Time, Dehumidified Dryer	2-4 h	l
Processing Moisture Content	0.02 %	%
Melt Temperature Optimum	260 °	°C Internal
Screw tangential speed	0.12 - 0.17 n	n/s
Max. mould temperature	90 - 100 °	'C
Injection speed	fast	

Characteristics

Additives Release agent Food contact FDA 21 CFR

Additional information

Injection molding

Melt Temperature 265-275 °C
Mold Temperature *) 90-100 °C
Maximum Barrel Residence Time **) 5-10 min
Injection Speed fast
Peripheral screw speed max.0,3 m/sec
Back Pressure 10-30 bar
Injection Pressure 600-1000 bar
Holding Pressure 400-800 bar
Nozzle Design open design preferred

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided.

Celanese recommends only externally heated hot runner systems.

- *) For moulded parts with especially high requirements to the surface quality or dimensional stability, a mold temperature of up to 110 °C can be advantageous.
- **) If the cylinder temperatures are higher than the recommended maximum temperatures, the max. residence time in the barrel has to be reduced.

Printed: 2023-09-14

CELANEX® 2408MT GF20

Processing Texts

Pre-drying CELANEX should in principle be predried. Because of the necessary low

maximum residual moisture content the use of dry air dryers is recommended. The dew point should be $=< -30^{\circ}$ C. The time between drying and processing

should be as short as possible.

Longer pre-drying times/storage For subsequent storage of the material in the dryer until processed (<= 60 h) it is

necessary to lower the temperature to 100° C.

Injection molding

Melt Temperature 265-275 °C

Mold Temperature *) 90-100 °C

Maximum Barrel Residence Time **) 5-10 min

Injection Speed fast

Peripheral screw speed max.0,3 m/sec

Back Pressure 10-30 bar Injection Pressure 600-1000 bar Holding Pressure 400-800 bar

Nozzle Design open design preferred

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided.

Celanese recommends only externally heated hot runner systems.

*) For moulded parts with especially high requirements to the surface quality or dimensional stability, a mold temperature of up to 110 °C can be advantageous.

**) If the cylinder temperatures are higher than the recommended maximum temperatures, the max. residence time in the barrel has to be reduced.

Injection molding Preprocessing

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0,02%. The drying should be done in a dry-air dryer (dew point < -30 $^{\circ}$ C) with a temperature of 120 to 140 $^{\circ}$ C and a drying time of 2 to 4 hours. In case of longer residence times in the dry-air dryer, the temperature should be reduced to 100 $^{\circ}$ C.

The time between drying and processing should be kept as short as possible. The processing machine feed hopper should be closed during the processing operation.

Printed: 2023-09-14

