CELANEX® 2500-6FC - PBT

Description

Celanex® PBT 2500-6FC is an easy flow and nucleated polybutylene terephthalate grade for injection molding. Celanex 2500-6FC is a general purpose, unreinforced polybutylene terephthalate with a good balance of mechanical properties and processability for use in food contact applications. Celanex 2500-6FC is a medium to high flow material that contains a lubricant and nucleant additive package, which has been designed to support customers in reaching shorter cycle times and higher productivity targets.

Physical properties	Value	Unit	Test Standard
Density	81.8	lb/ft ³	ISO 1183
Melt volume rate, MVR	40	cm ³ /10min	ISO 1133
MVR temperature	482	°F	ISO 1133
MVR load	4.76	lb	ISO 1133
Molding shrinkage, parallel (flow)	1.8 - 2.3	%	ISO 294-4, 2577
Molding shrinkage, transverse normal	1.8 - 2.1	%	ISO 294-4, 2577
Water absorption, 23°C-sat	0.45	%	Sim. to ISO 62
Humidity absorption, 23°C/50%RH	0.2	%	ISO 62
Mechanical properties	Value	Unit	Test Standard
Tensile modulus	391603	psi	ISO 527-1, -2
Tensile stress at yield, 50mm/min	8990	psi	ISO 527-1, -2
Tensile strain at yield, 50mm/min	4	%	ISO 527-1, -2
Tensile nominal strain at break, 50mm/min	15	%	ISO 527-1, -2
Tensile stress at break, 50mm/min	7980	psi	ISO 527-1, -2
Flexural strength, 23°C	13100	psi	ISO 178
Flexural stress at 3.5% strain	11600	psi	ISO 178
Charpy impact strength, 23°C	64.2	ft-lb/in ²	ISO 179/1eU
Charpy impact strength, -30°C	61.8	ft-lb/in ²	ISO 179/1eU
Charpy notched impact strength, 23°C	2.38	ft-lb/in ²	ISO 179/1eA
Charpy notched impact strength, -30°C	2.14	ft-lb/in ²	ISO 179/1eA
Thermal properties	Value	Unit	Test Standard
Melting temperature, 10°C/min	437	°F	ISO 11357-1/-3
DTUL at 1.8 MPa	140	°F	ISO 75-1, -2
DTUL at 0.45 MPa	320	°F	ISO 75-1, -2
Vicat softening temperature, 50 ° C/h 50N	374	°F	ISO 306
Coeff. of linear therm expansion, parallel	0.611	E-4/°F	ISO 11359-2
Electrical properties	Value	Unit	Test Standard
Volume resistivity, 23 °C	>1E13	Ohm*m	IEC 62631-3-1
Surface resistivity, 23°C	>1E15	Ohm	IEC 62631-3-2
Rheological calculation properties	Value	Unit	Test Standard
Density of melt	69.3	lb/ft ³	Internal
Thermal conductivity of melt	0.133	W/(m K)	Internal
Spec. heat capacity melt	1920	J/(kg K)	Internal
Ejection temperature	426	°F	Internal

Typical injection moulding processing conditions

Pre Drying	Value	Unit	
Necessary low maximum residual moisture content	0.02	%	
Drying time	2 - 4	h	
Drying temperature	248 - 284	°F	

CELANEX® 2500-6FC - PBT

Temperature	Value	Unit	
Hopper temperature	68 - 122	°F	
Feeding zone temperature	374 - 392	°F	
Zone1 temperature	464 - 482	°F	
Zone2 temperature	464 - 482	°F	
Zone3 temperature	473 - 491	°F	
Zone4 temperature	473 - 491	°F	
Nozzle temperature	482 - 500	°F	
Melt temperature	482 - 500	°F	
Mold temperature	167 - 185	°F	
Hot runner temperature	482 - 500	°F	
Speed	Value		
Injection speed	fast		

Other text information

Pre-drying

CELANEX should in principle be predried. Because of the necessary low maximum residual moisture content the use of dry air dryers is recommended. The dew point should be $=< -30^{\circ}$ C. The time between drying and processing should be as short as possible.

Longer pre-drying times/storage

For subsequent storage of the material in the dryer until processed (<= 60 h) it is necessary to lower the temperature to 100° C.

Injection molding

Melt Temperature 250-260 °C Mold Temperature 75-85 °C Maximum Barrel Residence Time *) 5-10 min Injection Speed fast Peripheral screw speed max.0,3 m/sec Back Pressure 10-30 bar Injection Pressure 600-1000 bar Holding Pressure 400-800 bar Nozzle Design open design preferred

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided. For grades containing flame retardants, a maximum temperature of 265 °C should not be exceeded.

Celanese recommends only externally heated hot runner systems.

*) If the cylinder temperatures are higher than the recommended maximum temperatures, the max. residence time in the barrel has to be reduced.

Injection Molding Preprocessing

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0,02%. The drying should be done in a dry-air dryer (dew point < -30 °C) with a temperature of 120 to 140 °C and a drying time of 4 to 2 hours. In case of longer residence times in the dry-air dryer, the temperature should be reduced to 100 °C. The time between drying and processing should be kept as short as possible. The processing machine feed hopper should be closed during the processing operation.

Characteristics

Product Categories	Unfilled
Processing	Injection molding
Regulatory	FDA food contact compliant
Delivery Form	Pellets
Additives	Release agent

Other Approvals

Developed for food contact applications in the EU, US [FDA] and China.

