COOLPOLY® D5110 - PPS

Description

CoolPoly D series of thermally conductive plastics transfers heat, a characteristic previously unavailable in injection molding grade polymers. CoolPoly is lightweight, netshape moldable and allows design freedom in applications previously restricted to metals. The D series is electrically non-conductive and can be used for its dielectric properties.

Physical properties	Value	Unit	Test Standard
Density	102	lb/ft ³	ISO 1183
Mechanical properties	Value	Unit	Test Standard
Tensile modulus	2E6	psi	ISO 527-1, -2
Tensile stress at break, 5mm/min	15100	psi	ISO 527-1, -2
Tensile strain at break, 5mm/min	1.2	%	ISO 527-1, -2
Flexural modulus, 23°C	1.88E6	psi	ISO 178
Flexural strength, 23°C	24800	psi	ISO 178
Charpy impact strength, 23°C	9.37	ft-lb/in ²	ISO 179/1eU
Thermal properties	Value	Unit	Test Standard
DTUL at 1.8 MPa	500	°F	ISO 75-1, -2
DTUL at 0.45 MPa	536	°F	ISO 75-1, -2
Flammability @1.6mm nom. thickn.	V-0	class	UL 94
thickness tested (1.6)	0.1	in	UL 94
Thermal conductivity, flow	1.5	W/(m K)	ASTM E1461
Thermal conductivity, crossflow	1.3	W/(m K)	ASTM E1461
Thermal conductivity, thruplane	0.7	W/(mK)	ASTM E1461
Electrical properties	Value	Unit	Test Standard
Dielectric constant (Dk), 1MHz	3.6	-	IEC 60250
Dissipation factor, 1MHz	10	E-4	IEC 60250

Typical injection moulding processing conditions

Pre Drying	Value	Unit	
Drying time	4 - 6	h	
Drying temperature	302	°F	
Temperature	Value	Unit	
Zone1 temperature	518 - 572	°F	
Zone2 temperature	527 - 581	°F	
Zone3 temperature	536 - 581	°F	
Zone4 temperature	563 - 599	°F	
Nozzle temperature	572 - 626	°F	
Melt temperature	572 - 626	°F	
Mold temperature	275 - 347	°F	
Pressure	Value	Unit	
Back pressure max.	7	bar	
Speed	Value		
Injection speed	slow-medium		
Characteristics			

Special Characteristics

Processing

Flame retardant, Light weighting, Thermally conductive

Injection molding

General Disclaimer

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products. The products mentioned herein are not intended for use in medical or dental implants.

Trademark

© 2022 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.

