ExonMobil

Vistamaxx[™] 3588FL Performance Polymer

Product Description

Vistamaxx 3588FL performance polymer is primarily composed of isotactic propylene repeat units with random ethylene distribution, and is produced using ExxonMobil Chemical's proprietary metallocene catalyst technology. The 'FL' designates this product passes ExxonMobil Chemical's test for film appearance with regard to gels, as needed for performance film applications ('A' rating).

Key Features

- Pure sealant layer of co-extruded structures in BOPP and cast PP film applications for low seal initiation temperature, high seal strength and enhanced seal integrity.
- RoHS compliant.

General					
Applications	 Cast Film 				
Uses	Film Packaging				
RoHS Compliance	 RoHS Compliant 				
Form(s)	 Pellets 				
Physical	Typical Value	(English)	Typical Value	(SI)	Test Based On
Density ²	0.889	g/cm³	0.889	g/cm³	ASTM D1505
Melt Mass-Flow Rate (MFR) ²	8	g/10 min	8	g/10 min	ExxonMobil Method
Ethylene Content	4	wt%	4	wt%	ExxonMobil Method
Hardness	Typical Value	(English)	Typical Value	(SI)	Test Based On
Durometer Hardness (Shore D)	52	-	52		ASTM D2240
Mechanical	Typical Value	(English)	Typical Value	(SI)	Test Based On
Tensile Stress at 100%	1560	psi	10.8	MPa	ASTM D638
Tensile Stress at 300%	1660	psi	11.4	MPa	ASTM D638
Tensile Strength at Yield	2300	psi	15.8	MPa	ASTM D638
Tensile Strength at Break	3640	psi	25.1	MPa	ASTM D638
Elongation at Yield	16	%	16	%	ASTM D638
Elongation at Break	617	%	617	%	ASTM D638
Flexural Modulus - 1% Secant	57100	psi	393	MPa	ASTM D790
Elastomers	Typical Value	(English)	Typical Value	(SI)	Test Based On
Tear Strength (Die C)	714	lbf/in	125	kN/m	ASTM D624
Thermal	Typical Value	(English)	Typical Value	(SI)	Test Based On
Vicat Softening Temperature	217	°F	103	°C	ExxonMobil Method

