Technical Data Sheet

HF1832

Linear Low Density Polyethylene

Product Description

The HF1832 resin is a pelletized linear low density polyethylene selected by customers for applications that require maximum strength and toughness. This product offers excellent additive homogeneity, requires no transfer equipment modification, and facilitates clean and safe handling. Typical applications include cast stretch film for pallet utilization. The HF1832 resin offers enhanced film strength, drawdown, toughness, and heat seal strength.

Application	Cast Stretch Film For Pallet Utilization
Market	Flexible Packaging
Processing Method	Cast Film: Sheet and Profile Extrusion

Typical Properties	Nominal Value	English Units	Nominal Value	SI Units	Test Method
Physical					
Melt Flow Rate, (190 °C/2.16 kg)	3.2	g/10 min	3.2	g/10 min	ASTM D1238
Base Resin Density, (23 °C)	0.918	g/cm³	0.918	g/cm³	ASTM D792
Product Density, (23 °C)	0.918	g/cm³	0.918	g/cm³	ASTM D792
Film					
Dart Drop Impact Strength, F50	104	g	104	g	ASTM D1709
Tensile Strength at Break					
MD	5670	psi	39	MPa	ASTM D882
TD	3340	psi	23	MPa	ASTM D882
Tensile Elongation at Break					
MD	481	%	481	%	ASTM D882
TD	735	%	735	%	ASTM D882
1% Secant Modulus					
MD	24400	psi	168	MPa	ASTM D882
TD	25800	psi	178	MPa	ASTM D882
Elmendorf Tear Strength					
MD	309	g	309	g	ASTM D1922
TD	764	g	764	g	ASTM D1922
Optical					
Haze	1.4	%	1.4	%	ASTM D1003
Gloss, (45°)	75	%	75	%	ASTM D2457
Additive					
Slip	None		None		LYB Method

Notes

Cast film used for testing was 0.8 mil (20.3 micron) extruded at 455 °F (235 °C) melt temperature.

These are typical property values not to be construed as specification limits.

Processing Techniques

Using proper techniques, these products can readily be drawn below 0.90 mils at optimum production rates.

Specific recommendations for resin type and processing conditions can only be made when the end use, required properties and fabrication equipment are known.

