Technical Data Sheet

HF2508

Linear Low Density Polyethylene

Product Description

The HF2508 resin is a pelletized linear low density polyethylene selected by customers for applications that require an enhanced combination of stiffness, maximum strength and toughness. This product offers excellent additive homogeneity, requires no transfer equipment modification, and facilitates clean and safe handling. Typical applications include heavy duty shipping sacks, trash can liners, commercial and industrial packaging, as well as food and consumer packaging. The HF2508 resin offers enhanced film strength, drawdown, toughness and stiffness.

Application	Bags & Pouches; Can Liners; Food Packaging Film; Heavy Duty Shipping Sacks; Liner Film; Retail Carryout Bags; Shrink Film
Market	Flexible Packaging; Rigid Packaging
Processing Method	Blown Film; Sheet and Profile Extrusion

	Nominal	English	Nominal	SI	
Typical Properties	Value	Units	Value	Units	Test Method
Physical					
Melt Flow Rate, (190 °C/2.16 kg)	0.8	g/10 min	0.8	g/10 min	ASTM D1238
Base Resin Density, (23 °C)	0.925	g/cm³	0.925	g/cm³	ASTM D792
Product Density, (23 °C)	0.925	g/cm³	0.925	g/cm³	ASTM D792
Film					
Dart Drop Impact Strength, F50	125	g	125	g	ASTM D1709
Tensile Strength at Break					
MD	8400	psi	58	MPa	ASTM D882
TD	7540	psi	52	MPa	ASTM D882
Tensile Elongation at Break					
MD	710	%	710	%	ASTM D882
TD	855	%	855	%	ASTM D882
1% Secant Modulus					
MD	48600	psi	335	MPa	ASTM D882
TD	52900	psi	365	MPa	ASTM D882
Elmendorf Tear Strength					
MD	320	g	320	g	ASTM D1922
TD	650	g	650	g	ASTM D1922
Optical					
Haze	14	%	14	%	ASTM D1003
Gloss, (45°)	49	%	49	%	ASTM D2457
Additive					
Slip	None		None		LYB Method

Notes

Film sample used for testing was 1.0 mil gauge, 2.5:1 BUR.

These are typical property values not to be construed as specification limits.

Processing Techniques

Recommended processing conditions for this product are a melt temperature of 400 - 450 °F and a 1.5 to 3.0:1 blow-up ratio.

Using proper techniques, these products can readily be drawn below 0.90 mils at optimum production rates.

Specific recommendations for resin type and processing conditions can only be made when the end use, required properties and fabrication equipment are known.

