

Bayblend® T88 GF-20 HI

Vorläufiges Datenblatt /

Kautschukmodifiziertes (PC+SAN)-Blend; 20% glasfaserverstärkt; Vicat/B 120 = 134 °C; E-Modul = 6000 MPa; Wärme und UV-alterungsoptimiert; sehr gutes Fließverhalten; für anspruchsvolle Anwendungen im Automobil-Innenbereich

ISO Formmassenbezeichnung

PC+SAN-I-GF20

Eigenschaft	Prüfbedingung	Einheit	Norm	typischer Wert
theologische Eigenschaften				
Schmelze-Volumenfließrate (MVR)	260 °C/ 5 kg	cm ³ /10 min	ISO 1133	9
Schmelzeviskosität	1000 s ⁻¹ / 260 °C	Pa-s	i.A. ISO 11443-A	250
Verarbeitungsschwindung, senkrecht	60x60x2 mm³/ 500 bar	%	ISO 294-4	0.4
Verarbeitungsschwindung, senkrecht	60x60x2 mm³/ 500 bar	%	ISO 294-4	0.4
lechanische Eigenschaften (23 °C/50 % r. F.)	· ·		Ц .	
Zug-Modul	1 mm/min	MPa	ISO 527-1,-2	6000
Streckspannung	5 mm/min	MPa	ISO 527-1,-2	100
Streckdehnung	5 mm/min	%	ISO 527-1,-2	2.9
Bruchspannung	5 mm/min	MPa	ISO 527-1,-2	100
Bruchdehnung	5 mm/min	%	ISO 527-1,-2	3
Biege-Modul	2 mm/min	MPa	ISO 178	5500
Randfaserdehnung bei Höchstkraft	2 mm/min	%	ISO 178	4
3.5 % - Biegespannung	2 mm/min	MPa	ISO 178	145
Izod-Schlagzähigkeit	23 °C	kJ/m²	ISO 180/U	40
Izod-Schlagzähigkeit	-30 °C	kJ/m²	ISO 180/U	45
Izod-Kerbschlagzähigkeit	23 °C	kJ/m²	ISO 180/A	12
Izod-Kerbschlagzähigkeit	-30 °C	kJ/m²	ISO 180/A	9
Charpy-Schlagzähigkeit	23 °C	kJ/m²	ISO 179/1eU	43
Charpy-Schlagzähigkeit	-30 °C	kJ/m²	ISO 179/1eU	50
Charpy-Kerbschlagzähigkeit	23 °C	kJ/m²	ISO 179/1eA	13
Charpy-Kerbschlagzähigkeit	-30 °C	kJ/m²	ISO 179/1eA	10
Kugeldruckhärte	Neu	N/mm²	ISO 2039-1	125
hermische Eigenschaften	,		,	
Formbeständigkeitstemperatur	1.80 MPa	°C	ISO 75-1,-2	126
Formbeständigkeitstemperatur	0.45 MPa	°C	ISO 75-1,-2	137
Vicat-Erweichungstemperatur	50 N; 50 °C/h	°C	ISO 306	132
Vicat-Erweichungstemperatur	50 N; 120 °C/h	°C	ISO 306	134
Linearer Wärmeausdehnungskoeffizient, parallel	23 bis 55 °C	10 ⁻⁴ /K	ISO 11359-1,-2	0.30
Linearer Wärmeausdehnungskoeffizient, senkrecht	23 bis 55 °C	10 ⁻⁴ /K	ISO 11359-1,-2	0.85
onstige Eigenschaften (23 °C)	<u> </u>			
Dichte		kg/m³	ISO 1183-1	1285
Glasfasergehalt	Verfahren A	%	i.A. ISO 3451-1	20
lerstellbedingungen für Probekörper		1,	1	
Spritzgießen - Massetemperatur		°C	ISO 294	260
Spritzgießen - Werkzeugtemperatur		°C	ISO 294	80
Spritzgießen - Einspritzgeschwindigkeit	+	mm/s	ISO 294	540

Bayblend® T88 GF-20 HI

Eigenschaft	Prüfbedingung	Einheit	Norm	typischer Wert
Empfohlene Verarbeitungs- und Trockenbedingungen				-
Schmelztemperaturen		°C	-	260-280
Massetemperatur (Empfohlen)		°C	-	270
Zylindertemperaturen - Einzugszone		°C	-	230 - 240
Zylindertemperaturen - Kompressionszone		°C	-	235 - 245
Zylindertemperaturen - Meteringzone		°C	-	240 - 270
Zylindertemperaturen - Düse		°C	-	265 - 275
Werkzeugtemperaturen		°C	-	70-90
Nachdruck (% von Einspritzdruck)		%	-	50 - 75
Staudruck (spezifisch)		bar	-	50 - 150
Schneckenumfangsgeschwindigkeit		m/s	-	0.05 - 0.2
Schußvolumen		%	-	30 - 70
Trocknungstemperatur		°C	-	100-110
Trockenlufttrockner		h	-	4
Restfeuchte (Gewicht %)		%	-	<= 0.02
Entlüftung		mm	-	0.025 - 0.075

C Diese Eigenschaftsmerkmale sind Bestandteil der Kunststoffdatenbank CAMPUS und basieren auf dem international festgelegten Katalog von Grunddaten für Kunststoffe ISO 10350.

Schlageigenschaften: N = Nicht-Bruch, P = Teilbruch, C = Vollständiger Bruch

