

Characterization	Texin 255D resin is a polyester-based thermoplastic polyurethane with a Shore hardness of approximately 55D*. It can be processed by injection molding; extrusion processes are not recommended.
Properties / Applications	Texin 255D natural color resin complies with FDA food-contact regulations 21 CFR 177.1680 (Polyurethane Resins) and 177.2600 (Rubber Articles Intended for Repeated Use), for use in articles that contact food except articles used for packing or holding food during cooking, subject to the limitations of these and any other applicable regulations.
	Texin 255D resin offers excellent fuel and oil resistance, as well as outstanding abrasion resistance, impact strength, toughness, and flexibility. Typical applications include toplifts, seals, gaskets, sleeves, casters, and gears. As with any product, use of Texin 255D resin in a given application must be tested (including field testing, etc.) in advance by the user to determine suitability.
Storage	Texin thermoplastic polyurethane resins are hygroscopic and will absorb ambient moisture. The presence of moisture can adversely affect processing characteristics and the quality of parts. Therefore, the resins should remain in their sealed containers and be stored under cool and dry conditions until used. Storage temperature should not exceed 86°F (30°C). Unused resin from opened containers, or reground material that is not to be used immediately, should be stored in sealed containers.
Drying	Prior to processing, Texin 255D resin must be thoroughly dried in a desiccant dehumidifying hopper dryer. Hopper inlet air temperature should be 200° –220°F (93° –104°C). To achieve the recommended moisture content of less than 0.03%, the inlet air dew point should be -20°F (-29°C) or lower. The hopper capacity should be sufficient to provide a minimum residence time of 4 hours. Additional information on drying procedures is available in the brochure - General Drying Guide.

Injection Molding

Texin 255D resin may be easily processed on commercially available equipment suitable for injection molding of thermoplastic polyurethane elastomers. The recommended screw length-to-diameter (L/D) ratio is 20:1 with a compression ratio of 2.5 - 3:1. Screws with a compression ratio greater than 4:1 should be avoided. Typical starting conditions are noted below. Actual processing conditions will depend on machine size, mold design, material residence time, etc.

Typical Injection Molding Conditions

Barrel Temperature: Rear	400°–420°F (204°–216°C)
Barrel Temperature: Middle	405°–425°F (207°–218°C)
Barrel Temperature: Front	405°–425°F (207°–218°C)
Barrel Temperature: Nozzle	410°–430°F (210°–221°C)
Ideal Melt Temperature	410-430°F (210-221°C)
Mold Temperature	80°–110°F (27°–43°C)
Injection Pressure	10,000 - 15,000 psi
Clamp Pressure	3 - 5 ton/in ² of projected part area
Shot Weight	40 - 80% of rated barrel capacity
Timers (per 0.125-in cross section)	
Boost	5 -15 sec
2nd Stage	10- 25 sec
Cool	25 - 40 sec

Mold Shrinkage

Typical values for mold shrinkage are given below. For treatments such as postcuring, an additional 1 to 1.5 mil per inch should be added.

Cross Section	Mold Shrinkage*
Less than 1/8 inch	7 - 10 mils per inch
1/8 to 1/4 inch	10 - 15 mils per inch
Over 1/4 inch	15 - 20 mils per inch

Additional Injection Molding Information	Additional information on injection molding may be obtained by consulting the publication - Texin and Desmopan Thermoplastic Polyurethanes — A Processing Guide for Injection Molding and by contacting a Covestro technical service representative.
Regrind Usage	Where end-use requirements permit, up to 20% Texin resin regrind may be used with virgin material, provided that the material is kept free of contamination and is properly dried (see section on Drying). Any regrind used must be generated from properly molded/extruded parts, sprues, runners, trimmings, and/or films. All regrind used must be clean, uncontaminated, and thoroughly blended with virgin resin prior to drying and processing. Under no circumstances should degraded, discolored, or contaminated material be used for regrind. Materials of this type should be properly discarded.
	Improperly mixed and/or dried regrind may diminish the desired properties of Texin resin. It is critical that you test finished parts produced with any amount of regrind to ensure that your end-use performance requirements are fully met. Regulatory or testing organizations (e.g., Underwriter's Laboratories) may have specific requirements limiting the allowable amount of regrind. Because third party regrind generally does not have a traceable heat history or offer any assurance that proper temperatures, conditions, and/or materials were used in processing, extreme caution must be exercised in buying and using regrind from third parties.
	The use of regrind material should be avoided entirely in those applications where resin properties equivalent to virgin material are required, including but not limited to color quality, impact strength, resin purity, and/or load-bearing performance.

Typical Properties* for Natural Resin

Property	ASTM Test Method (Other)	Texin 255D Resin U.S. Units	Texin 255D Resin S.I. Units	
General				
Specific Gravity	D 792 (ISO 1183)	1.21	1.21	
Shore Hardness	D 2240 (ISO 868)	55D	55D	
Taber Abrasion: H-18, 1,000-g Load, 1,000	D 3489 (ISO 4649)	50 mg Loss	50 mg Loss	
Cycles				
Bayshore Resilience	D 2632	40%	40%	
Mold Shrinkage, 100-mil thickness	D 955 (ISO 2577)			
Flow Direction		0.008 in/in (mm/mm)	0.008 in/in (mm/mm)	
Cross-Flow Direction		0.008 in/in (mm/mm)	0.008 in/in (mm/mm)	
Mechanical		· · · · ·	· · ·	
Tensile Strength	D 412 (ISO 37)	9,200 lb/in ²	63.4 MPa	
Tensile Stress at 50%	D 412 (ISO 37)	1,800 lb/in ²	12.4 MPa	
Elongation				
Tensile Stress at 100% Elongation	D 412 (ISO 37)	2,300 lb/in ²	15.9 MPa	
Tensile Stress at 300%	D 412 (ISO 37)	4,700 lb/in ²	32.4 MPa	
Elongation				
Ultimate Elongation	D 412 (ISO 37)	500%	500%	
Shear Strength	D 732	5,585 lb/in ²	38.5 MPa	
Tear Strength, Die C	D 624 (ISO 34)	900 lbf/in	157.6 kN/m	
Flexural Modulus:	D 790 (ISO 178)	9,000 lb/in ²	62.1 MPa	
158°F (70°C)			138 MPa	
73°F (23°C) -22°F (-30°C)		20,000 lb/in ²	1,207 MPa	
, , ,		175,000 lb/in ²	,	
Instrumented Impact, Total Energy: 100-mil thickness, 5 ph, 3-in clamp	D 3763 (ISO 6603)			
73°F (23°C) -22°F (-30°C)		42.6 ft•lb 36.9 ft•lb	57.8 J 50.0 J	

Typical Properties* for Natural Resin (CONT'D.)

Property	ASTM Test Method (Other)	Texin 255D Resin U.S. Units	Texin 255D Resin S.I. Units	
Compression Set:	D 395-B (ISO 815)			
As molded [postcured]**				
22 Hours at 212°F (100°C)		75%	75%	
22 Hours at 158°F (70°C)		65% 00%	65%	
22 Hours at 73°F (23°C)		20%	20%	
Postcured		F00 /	F0 0/	
22 Hours at 212°F (100°C)		50%	50%	
22 Hours at 158°F (70°C)		35%	35%	
22 Hours at 73°F (23°C)		15%	15%	
Compressive Load:	D 575	140 lb/in ²		
2% Deflection			1.0 MPa	
5% Deflection		565 lb/in ²	3.9 MPa	
10% Deflection		1,075 lb/in ²	7.4 MPa	
15% Deflection		1,465 lb/in ²		
20% Deflection 25% Deflection		1,840 lb/in ²	10.1 MPa	
50% Deflection			12.7 MPa	
50 % Dellection		2,245 lb/in ²		
		5,890 lb/in ²	15.5 MPa	
-			40.6 MPa	
Thermal		10005	5000	
Deflection Temperature Under Load, 66 psi	D 648 (ISO 75)	139°F	59°C	
Coefficient of Linear Thermal	D 696	7.3 E-05 in/in°F	13.1 E-05 mm/mm°C	
Expansion				
Low Temperature Brittle Point	D 746 (ISO 974)	< -90°F	< -68°C	
Glass Transition	(DMA) ^a	-15°F	-26°C	
Temperature (Tg)	(2			
Vicat Softening Temperature	D 1525 (ISO 306)	334°F	168°C	
Rate A				
Flammability***				
UL94 Flame Class	(UL94)	HB Rating ^b	HB Rating ^b	
0.059-in (1.5-mm) thickness		5	6	

product specifications.

** Postcured for 16 hours at 230°F (110°C).

*** Flammability results are based on small-scale laboratory tests for purposes of relative comparison and are

not intended to reflect the hazards presented by this or any other material under actual fire conditions.

a DMA — Dynamic Mechanical Analysis. b Natural and black colors.

Property Changes after Aging Texin 255D Resin

Property	ASTM Test Method (Other)	70 Hours	7 Days	14 Days	21 Days
Hot Air at 257°F (125°C)	D 573 (ISO 216)				
Tensile Strength		-20%	-11%	-23%	-27%
Tensile Stress at		+7%	-2%	+8%	+4%
100% Elongation					
Tensile Stress at		-23%	-15%	-27%	-30%
300% Elongation					
Ultimate Elongation		+28%	+24%	+35%	+30%
Hardness, Shore D		+1	0	-5	-4
Hot Air at 212°F (100°C)	D 573 (ISO 216)				
Tensile Strength		+3%	+8%	+14%	+14%
Tensile Stress at		+11%	+4%	+13%	+14%
100% Elongation					
Tensile Stress at		+1%	-5%	-1%	+1%
300% Elongation					
Ultimate Elongation		-3%	+7%	+14%	+15%
Hardness, Shore D		-2	-1	0	0
ASTM Oil #1 at 212°F (100°C)	D 471 (ISO 175)				
Tensile Strength		+18%	-4%	-20%	-29%
Tensile Stress at		+12%	+14%	+14%	+15%
100% Elongation					
Tensile Stress at		+7%	+2%	-9%	-14%
300% Elongation					
Ultimate Elongation		+8%	+12%	+24%	+16%
Hardness, Shore D		+2	+1	-2	0
Volume		-1%	0%	-1%	-1%

Property Changes after Aging Texin 255D Resin (CONT'D.)

Property	ASTM Test Method (Other)	70 Hours	7 Days	14 Days	21 Days
ASTM Oil #3 at 212°F (100°C)	D 471 (ISO 175)				
Tensile Strength		+19%			-18%
Tensile Stress at		+16%			+2%
100% Elongation					
Tensile Stress at		+13%			-12%
300% Elongation					
Ultimate Elongation		+6%			+20%
Hardness, Shore D		+2			-1
Volume		+2%			+4%
Fuel A at 73°F (23°C)	D 471 (ISO 175)				
Tensile Strength		+6%	-3%	+6%	-1%
Tensile Stress at		+2%	-2%	+3%	+5%
100% Elongation					
Tensile Stress at		+5%	-11%	-1%	+3%
300% Elongation					
Ultimate Elongation		-4%	+9%	-4%	-2%
Hardness, Shore D		-4	+1	-1	+6
Volume		0%	0%	0%	0%
Fuel C at 73°F (23°C)	D 471 (ISO 175)				
Tensile Strength		+1%	-4%	-10%	-11%
Tensile Stress at		-19%	-27%	-32%	-27%
100% Elongation					
Tensile Stress at		-22%	-34%	-35%	-28%
300% Elongation					
Ultimate Elongation		+5%	+6%	-2%	-8%
Hardness, Shore D		-7	-4	-6	-8
Volume		+6%	+10%	+14%	+14%

* This table shows property changes for Texin 255D resin after exposure to hot air, oil, and fuel. As is the case with any compatibility test, the results are dependent on variables, such as concentration, time, temperature, part design, and residual stresses, and should serve only as a guideline. It is imperative that production parts be evaluated under actual application conditions prior to commercial use.

Note	and Regulatory Affairs Department in Pittsburgh, PA. <i>The purchaser/user agrees that Covestro LLC reserves the right to</i> <i>discontinue this product without prior notice.</i>
	concerning the health and safety precautions that must be observed when handling this product. Before working with this product, you must read and become familiar with the available information on its risks, proper use, and handling. This cannot be overemphasized. Information is available in several forms, e.g., safety data sheets and product labels. For further information contact your Covestro LLC representative or the Product Safety
Health and Safety Information	Appropriate literature has been assembled which provides information

