

PREMIUM EXTRUSION AND RIGID PACKAGING RESINS

Marlex® HHM TR-457 Polyethylene

HIGH DENSITY POLYETHYLENE (HDPE)

This ethylene-hexene copolymer is tailored for conduit pipe applications that require:

- · Superior melt strength
- · Excellent pipe stiffness
- Outstanding slow crack growth resistance

Typical pipe applications for HHM TR-457 include:

- Telecommunications
- · Data transmission
- Electrical

This resin meets these specifications:

- ASTM D4976 PE 235
- ASTM D3350, class PE445580A
- ASTM F2160

Nominal Resin Properties ⁽¹⁾	English	SI	Method
Density		0.953 g/cm ³	ASTM D1505
Flow Rate (HLMI, 190 °C/21.6 kg)		17.5 g/10 min	ASTM D1238
Flexural Modulus, 2 % Secant, 16:1 span:depth, 0.5 in/min	140,000 psi	965 MPa	ASTM D790
Tensile Strength at Yield, 2 in/min, Type IV bar	3,700 psi	26 MPa	ASTM D638
Tensile Elongation at Break, 2 in/min, Type IV bar	700 %	700 %	ASTM D638
ESCR, Condition B, (10 % Igepal), F ₁₀	> 96 h	> 96 h	ASTM D1693
ESCR, Condition C, (100 % Igepal), F ₂₀	> 600 h	> 600 h	ASTM D1693

^{1.} The nominal properties reported herein are typical of the product, but do not reflect normal testing variance and therefore should not be used for specification purposes. Values are rounded. The physical properties were determined on compression molded specimens that were prepared in accordance with Procedure C of ASTM D4703, Annex A1.

Another quality product from

The Woodlands, Texas

