

PREMIUM EXTRUSION AND RIGID PACKAGING RESINS

Marlex® HMN TR-945 / HMN TR-945G Polyethylene

HIGH DENSITY POLYETHYLENE (HDPE)

This high density polyethylene resin is an ethylene-hexene copolymer tailored for rotational molding applications that require:

- Wide process windows
- Good impact strength
- · Good flow combined with fair ESCR
- High modulus
- Durability

This resin is available in two physical forms:

- Pellet form HMN TR-945
- 35 US mesh powder HMN TR-945G

Typical applications for HMN TR-945 and HMN TR-945G include:

- Large tanks and other high modulus parts
- Ductwork

This resin meets these specifications:

- ASTM D4976 PE 233
- FDA 21 CFR 177.1520(c) 3.2a, Use conditions B through H per 21 CFR 176.170(c) Table 2 for single use articles contacting food types I, II, IV-B, VI-A, VI-B, VII-B, and VIII. Repeated use articles contacting all food types defined in 21 CFR 176.170(c) Table 1. When contacting fatty foods of Types III, IV-A, V, VII-A, and IX described in Table 1, the finished articles are to have a volume of at least 18.9 liters (5 gallons).
- FMVSS.302 burn test
- Long term UV stabilization ASTM 2565 (Cycle 1): greater than UV-20

Nominal Physical Properties ^{(1), (2)}	English	SI	Method
Density		0.945 g/cm ³	ASTM D1505
Melt Index, 190 °C/2.16 kg		6.0 g/10 min	ASTM D1238
ESCR, Condition A (100 % Igepal), F ₅₀	70 h	70 h	ASTM D1693
ESCR, Condition A (10 % Igepal), F ₅₀	25 h	25 h	ASTM D1693
Durometer Hardness , Type D (Shore D)	63	63	ASTM D2240
Vicat Softening Temperature, Loading 1, Rate A	244 °F	118 °C	ASTM D1525
Brittleness Temperature, Type A, Type I specimen	-103 °F	-75 °C	ASTM D746
Melting Temperature	266 °F	130 °C	ASTM D3418
Crystallization Temperature	235 °F	113 °C	ASTM D3418
Rotational Molded Properties ^{(1), (3)}	English	SI	Method
Impact Strength, 1/8" (3.2 mm) thickness, -40 °C	68 ft·lb	92 J	ARM Impact
Impact Strength, 1/4" (6.35 mm) thickness, -40 °C	165 ft·lb	223 J	ARM Impact
Tensile Strength at Yield, 2 in/min, Type IV bar	2,900 psi	20 MPa	ASTM D638
Elongation at Break, 2 in/min, Type IV bar	460 %	460 %	ASTM D638
Flexural Modulus, Tangent - 16:1 span:depth, 0.5 in/min	132,000 psi	910 MPa	ASTM D790
Flexural Modulus, 1 % Secant - 16:1 span:depth, 0.5 in/min	107,000 psi	740 MPa	ASTM D790
Heat Deflection Temperature, 66 psi, Method A	147 °F	64 °C	ASTM D648
Heat Deflection Temperature, 264 psi, Method A	111 °F	44 °C	ASTM D648

^{1.} The nominal properties reported herein are typical of the product, but do not reflect normal testing variance and therefore should not be used for specification purposes. Values are rounded.

^{3.} Properties were measured on rotational molded samples with 1/8" (3.17 mm) average thickness, unless otherwise noted. The average peak internal air temperature during molding was above 400 °F.

^{2.} The physical properties were determined on compression-molded specimens that were prepared in accordance with Procedure C of ASTM D4703, Annex A1.