

PREMIUM EXTRUSION AND RIGID PACKAGING RESINS

Marlex® HMN TR-935 / HMN TR-935G Polyethylene

MEDIUM DENSITY POLYETHYLENE (MDPE)

This medium density polyethylene resin is an ethylene-hexene copolymer tailored for rotational molding applications that require:

- · Wide process windows
- · Excellent impact strength
- · Good flow
- Excellent ESCR
- Durability

This resin is available in two physical forms:

- Pellet form HMN TR-935
- 35 US mesh powder HMN TR-935G

Typical applications for HMN TR-935 and HMN TR-935G include:

- · Recreational and agricultural equipment
- Tovs and carts

This resin meets these specifications:

- ASTM D4976 PE 223
- FDA 21 CFR 177.1520(c) 3.2a, Use conditions B through H per 21 CFR 176.170(c) Table 2 for single use articles contacting food types I, II, IV-B, VI-A, VI-B, VII-B, and VIII. Repeated use articles contacting all food types defined in 21 CFR 176.170(c) Table 1. When contacting fatty foods of Types III, IV-A, V, VII-A, and IX described in Table 1, the finished articles are to have a volume of at least 18.9 liters (5 gallons).
- NSF / ANSI Standard 61 for potable water (CLD 23)
- NSF / ANSI Standard 51 for any food contact (MTU 100 °C)
- UL94HB yellow card per UL file E349283
- UL746C (f1) yellow card per UL file E349283
- FMVSS.302 burn test
- AS/NZS 4020:2005 (contact with drinking water)
- Long term UV stabilization ASTM 2565 (Cycle 1): greater than UV-20

Long term ov stabilization – ASTN 2303 (Cycle 1): greater than ov-z			
Nominal Physical Properties ^{(1), (2)}	English	SI	Method
Density		0.936 g/cm ³	ASTM D1505
Melt Index, 190 °C/2.16 kg		6.0 g/10 min	ASTM D1238
ESCR, Condition A (100 % Igepal), F ₅₀	> 1,000 h	> 1,000 h	ASTM D1693
ESCR, Condition A (10 % Igepal), F ₅₀	130 h	130 h	ASTM D1693
Durometer Hardness, Type D (Shore D)	59	59	ASTM D2240
Vicat Softening Temperature, Loading 1, Rate A	231 °F	110 °C	ASTM D1525
Brittleness Temperature, Type A, Type I specimen	-103 °F	-75 °C	ASTM D746
Melting Temperature	263 °F	128 °C	ASTM D3418
Crystallization Temperature	234 °F	112 °C	ASTM D3418
Rotational Molded Properties ^{(1), (3)}	English	SI	Method
Impact Strength, 1/8" (3.2 mm) thickness, -40 °C	75 ft·lb	102 J	ARM Impact
Impact Strength, 1/4" (6.35 mm) thickness, -40 °C	175 ft·lb	237 J	ARM Impact
Tensile Strength at Yield, 2 in/min, Type IV bar	2,400 psi	16.5 MPa	ASTM D638
Elongation at Break, 2 in/min, Type IV bar	750 %	750 %	ASTM D638
Flexural Modulus, Tangent - 16:1 span:depth, 0.5 in/min	110,000 psi	760 MPa	ASTM D790
Flexural Modulus, 1 % Secant - 16:1 span:depth, 0.5 in/min	90,000 psi	620 MPa	ASTM D790
Heat Deflection Temperature, 66 psi, Method A	136 °F	58 °C	ASTM D648
Heat Deflection Temperature, 264 psi, Method A	106 °F	41 °C	ASTM D648

^{1.} The nominal properties reported herein are typical of the product, but do not reflect normal testing variance and therefore should not be used for specification purposes. Values are rounded.

^{3.} Properties were measured on rotational molded samples with 1/8" (3.17 mm) average thickness, unless otherwise noted. The average peak internal air temperature during molding was above 400 °F.

^{2.} The physical properties were determined on compression-molded specimens that were prepared in accordance with Procedure C of ASTM D4703, Annex A1.