

# IUPILON®

## **POLYCARBONATE**

ENGINEERING THERMOPLASTIC

IUPILON® IS A REGISTRED TRADEMARK OF MITSUBISHI ENGINEERING PLASTICS CORPORATION

### **IUPILON® E1600MU**

IUPILON® E1600MU is an ultra high viscosity, branched polycarbonate grade specifically designed for multi-wall sheet and profile extrusion applications. E1600MU offers an excellent balance of transparency, toughness, UV stability, flame retardency and processability.

|                              | CONDITIONS                 | <u>UNITS</u>    | TYPICAL<br>VALUES | TESTING<br>METHODS |
|------------------------------|----------------------------|-----------------|-------------------|--------------------|
| 1. Mechanical Properties     |                            |                 |                   |                    |
| Notched Izod Impact Strength | 12.7 x 3.2 mm              | J/m             | 800               | ASTM D256          |
| Falling Dart Impact          | 3.2 mm                     | J               | 85                | ASTM D3029         |
| Tensile Strength             | 12.7 x 3.2 mm @ 20 mm/min  | MPa             | 65                | ASTM D638          |
| Elongation to Fail           | 12.7 x 3.2 mm @ 20 mm/min  | %               | 140               | ASTM D638          |
| Flexural Strength            | 12.7 x 6.4 mm @ 2.8 mm/min | MPa             | 93                | ASTM D790          |
| Flexural Modulus             | 12.7 x 6.4 mm @ 2.8 mm/min | MPa             | 2300              | ASTM D790          |
| 2. Thermal Properties        |                            |                 |                   |                    |
| Heat Deflection Temperature  | 12.7 x 6.4 mm @ 1.82 MPa   | ${}_{\bar{0}}C$ | 135               | ASTM D648          |
|                              | 12.7 x 6.4 mm @ 0.46 MPa   | ōC              | 150               | ASTM D648          |
| 4. Physical Properties       |                            |                 |                   |                    |
| Melt Flow Rate               | 300ºC, 1.20 kg             | g/10 min        | 5.0               | ASTM D1238         |
| Specific Gravity             |                            | -               | 1.2               | ASTM D792          |
| Rockwell Hardness            |                            | R               | 123               | ASTM D785          |
| UL Flammability              | 1.6 mm                     | Rating          | V-2               | UL 94              |





#### TYPICAL PROCESSING CONDITIONS

### **IUPILON® E1600MU**

The following typical guidelines are offered as initial processing conditions for IUPILON® E1600MU In practice, processing parameters may need to be varied to give commercially acceptable performance in conjunction with optimum physical properties. For specific technical advice on part design or processing conditions, contact the Marplex Technical Service Department.

Temperature of pellet bed in dehumidifying drier 120 - 125 °C

Minimum drying time at desired pellet bed temp 4 - 6 hours

Cylinder temperatures Zone 1 (Feed) 240 - 250 °C

Zone 2 245 - 270 °C

Zone 3 250 - 270 °C

Zone 4 260 - 275 °C

Zone 5 250 - 270 °C

Die Temperature Settings 240 - 270 °C

Adjust die temperature profile to ensure an even

flow rate across the profile width

Required stock temperature 260 - 280 °C

Back pressure 10 - 25 MPa

Screw cooling Desirable for extre stock

temperature control

Calibrator (with air) Temperatures 80 - 90 °C

#### Comment(s):

- Cleanliness of the dryer, machine hopper and machine screw/barrel/nozzle assembly are essential for processing lupilon® Polycarbonate and producing contamination free profile, rodstock and sheeting.
- 2 lupilon® Polycarbonate is not compatible with other polymers.
- It is suggested that the pre-drying, die head, roller and material temperatures are manually confirmed using a hand held temperature measuring device.
- 4 Excessive heat can discolour light colours of lupilon® Polycarbonate.

**Conversions:** 1 MPa = 145 psi

 $= 10.2 \text{ kg/cm}^2$ 

= 10 bar

 ${}^{\circ}C = 5({}^{\circ}F-32)/9$ 

 $1 \text{ kN/cm}^2 = 0.65 \text{ ton/in}^2$ 



