

Sarlink 4700 Series

Combining the Advantages of Thermoplastic Processing and Elastomeric Performance

Sarlink 4700 series grades exemplify both our curiosity and discipline in research, and care and dedication in production. Our engineers have succeeded in creating a product range that feels like rubber yet processes easily like plastic. Sarlink 4700 is based on dynamically vulcanized rubber in a polypropylene matrix, which combines superb elastic properties with the processing ease of thermoplastics.

High Material Efficiency

Sarlink is the environmentally friendly equivalent to general purpose thermoset rubber compounds, with high chemical resistance comparable to general purpose polychloroprene rubber compounds. This unique combination enables a broad range of applications.

Compared to thermoset rubber, using Sarlink will reduce production costs due to its shorter cycle times, reduced energy needs, and a very high material efficiency as a result of its recyclability.

Main Characteristics

Sarlink 4700 series compounds are characterized by high or super high flow properties coupled with excellent elastic behavior and UV resistance. These grades

are specifically designed for use in injection molded parts requiring outstanding surface appearance, especially for use in hard-to-fill parts. Products using these grades can be manufactured with fast cycle time and easy mold release. The Sarlink 4700 series is available in hardnesses from 50 Shore A up to 85 Shore A, in black color.

Safety

Sarlink does not present a toxic hazard through skin contact or inhalation when handled under normal conditions. Contact with molten polymers or inhalation of fumes should be avoided during processing. More and detailed information can be downloaded

Other Sarlink Products

Other Sarlink grade series exist, each with a specialty set of properties designed to fit a variety of application requirements. In addition to standard Sarlink series, special Sarlink grades exist or can be developed to meet unique customer requirements, such as specific OEM or regulatory approval requirements, or potable water contact. Information regarding these specialty grades and other Sarlink series are available via your

Data Sarlink 4700 high flow injection molding grades (ISO standards - typical properties) Date of last modification: 1-Aug-08									
Typical properties	Test standard	Units S.I.	4750B42	4755B42	4765B40	4765B42	4775B40	4775B42	4785B40
Density	ISO 1183	kg/m3	910	910	910	910	910	910	910
Hardness (5 sec delay) Extruded sample Injection molded sample	ISO 868	Shore A or D	50A 53A	54A 56A	62A 65A	62A 65A	74A 76A	74A 76A	84A 86A
Tensile properties Flow direction Tensile strength at break Modulus at 100% elongation Elongation at break	ISO 37	MPa MPa %	3,9 2,2 320	4,3 2,7 390	5,0 3,0 360	4,9 2,9 340	6,0 3,5 410	5,8 3,4 410	8,9 5,5 450
Cross flow direction Tensile strength at break Modulus at 100% elongation Elongation at break		MPa MPa %	4,2 1,5 440	5,0 1,8 500	5,6 2,4 490	5,1 2,3 400	6,6 3,1 490	6,3 3,2 470	9,5 4,8 540
Tear strength (cross flow) Unnicked angle	ISO 34B	kN/m	16	19	26	25	33	31	40
Compression set 22 hrs@23°C 22 hrs@70°C 70 hrs@125°C	ISO 815	% % %	15 26 40	19 28 43	20 26 45	23 32 48	24 36 52	24 39 56	32 44 72
Hot air aging (cross flow direction) 168 hrs@150°C Change in hardness Retention tensile strength at break Retention modulus at 100% elongation Retention elongation at break	ISO 188	pts % % %	-1 80 93 87	-2 94 99 98	o 82 98 83	1 80 100 76	1 78 102 71	1 81 102 76	3 90 107 82
1000 hrs @135°C Change in hardness Retention tensile strength at break Retention modulus at 100% elongation Retention elongation at break		pts % % %	2 89 99	2 98 107 96	2 88 102 87	1 82 101 78	3 88 105 84	-2 82 103 72	1 96 109 86
Volume swell 70 hrs@125°C in IRM 903 oil	ISO 1817	%	85	90	84	84	74	73	65
Apparent shear viscosity @2061/s, 200°C	ISO 11443 Capillary	Pa.s	220	220	230	210	220	200	190

Some grades may not be available locally

Stretching innovations

